If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=150
We move all terms to the left:
2x^2+10x-(150)=0
a = 2; b = 10; c = -150;
Δ = b2-4ac
Δ = 102-4·2·(-150)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*2}=\frac{-10-10\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*2}=\frac{-10+10\sqrt{13}}{4} $
| 15j-11=12 | | 18k-14k=20 | | 7y-9=3y+19; | | m4-2m3-3m2+4m+4=0 | | -4/7v=-2/3-8 | | 2x(4x+8)=2 | | S+t=2 | | 4^7x-9=1024 | | 4^7x-9=1025 | | Z+3y=34 | | 36=-7v-4+3v | | 36=-7v-4+9v | | 2x(4x+8)=2x(4x+8) | | 39.95x-0.35=69.70 | | 0=-16t^2+18t+5 | | 49^x=7^x+1 | | 1/4x^+x-2=0 | | 35=6v+4-2v | | 32=5v-7+4v | | 1x–7=10x–37 | | .250=g/22+.146 | | -11z-12z=11 | | n–9=19 | | (2x+20)(3x+10)=180 | | n–9=19n= | | -7+q=-11 | | 1.2-3e=-1.8 | | X+0.21x=22 | | 125-x=65 | | -x+197=71 | | -3(x-2)+21=0 | | -2x+1=-81 |